Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
RSC Adv ; 14(17): 11949-11950, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623283

RESUMO

[This corrects the article DOI: 10.1039/D1RA07210B.].

2.
Water Res ; 256: 121597, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38614030

RESUMO

Nano and micro-plastics (NMPs, particles diameter <5 mm), as emerging contaminants, have become a major concern in the aquatic environment because of their adverse consequences to aquatic life and potentially human health. Implementing mitigation strategies requires quantifying NMPs mass emissions and understanding their sources and transport pathways from land to riverine systems. Herein, to access NMPs mass input from agricultural soil to riverine system via water-driven soil erosion, we have collected soil samples from 120 cultivated land in nine drainage basins across China in 2021 and quantified the residues of six common types of plastic, including polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polypropylene (PP), polyethylene (PE), polycarbonate (PC), and polystyrene (PS). NMPs (Σ6plastics) were detected in all samples at concentrations between 3.6 and 816.6 µg/g dry weight (median, 63.3 µg/g) by thermal desorption/pyrolysis-gas chromatography-mass spectrometry. Then, based on the Revised Universal Soil Loss Equation model, we estimated that about 22,700 tonnes of NMPs may enter the Chinese riverine system in 2020 due to agricultural water-driven soil erosion, which occurs primarily from May to September. Our result suggested that over 90% of the riverine NMPs related to agricultural soil erosion in China are attributed to 36.5% of the country's total cultivated land, mainly distributed in the Yangtze River Basin, Southwest Basin, and Pearl River Basin. The migration of NMPs due to water-driven soil erosion cannot be ignored, and erosion management strategies may contribute to alleviating plastic pollution issues in aquatic systems.

3.
Sci Adv ; 10(16): eadk1855, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630814

RESUMO

Transfected stem cells and T cells are promising in personalized cell therapy and immunotherapy against various diseases. However, existing transfection techniques face a fundamental trade-off between transfection efficiency and cell viability; achieving both simultaneously remains a substantial challenge. This study presents an acoustothermal transfection method that leverages acoustic and thermal effects on cells to enhance the permeability of both the cell membrane and nuclear envelope to achieve safe, efficient, and high-throughput transfection of primary T cells and stem cells. With this method, two types of plasmids were simultaneously delivered into the nuclei of mesenchymal stem cells (MSCs) with efficiencies of 89.6 ± 1.2%. CXCR4-transfected MSCs could efficiently target cerebral ischemia sites in vivo and reduce the infarct volume in mice. Our acoustothermal transfection method addresses a key bottleneck in balancing the transfection efficiency and cell viability, which can become a powerful tool in the future for cellular and gene therapies.


Assuntos
Células-Tronco Mesenquimais , Camundongos , Animais , Transfecção , Células-Tronco Mesenquimais/metabolismo , Plasmídeos , Membrana Celular , Terapia Baseada em Transplante de Células e Tecidos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38557630

RESUMO

There is widespread interest and concern about the evidence and hypothesis that the auditory system is involved in ultrasound neuromodulation. We have addressed this problem by performing acoustic shear wave simulations in mouse skull and behavioral experiments in deaf mice. The simulation results showed that shear waves propagating along the skull did not reach sufficient acoustic pressure in the auditory cortex to modulate neurons. Behavioral experiments were subsequently performed to awaken anesthetized mice with ultrasound targeting the motor cortex or ventral tegmental area. The experimental results showed that ultrasound stimulation of the target areas significantly increased arousal scores even in deaf mice, whereas loss of ultrasound gel abolished the effect. Immunofluorescence staining also showed that ultrasound can modulate neurons in the target area, whereas neurons in the auditory cortex required the involvement of the normal auditory system for activation. In summary, the shear waves propagating along the skull cannot reach the auditory cortex and induce neuronal activation. Ultrasound neuromodulation-induced arousal behavior needs direct action on functionally relevant stimulation targets in the absence of auditory system participation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38519614

RESUMO

Cruciferae brassica oilseed rape is the third largest oilseed crop in the world and the first in China, as well as a fertilizer-dependent crop. With the increased application of organic fertilizers from livestock manure in agricultural production in recent years, the resulting antibiotic pollution and its ecological health effects have attracted widespread attention. In this study, typical tetracycline and sulfonamide antibiotics tetracycline (TC) and sulfamethoxazole (SMZ) were used to investigate the effects of antibiotics on rapeseed quality and oxidative stress at the level of secondary metabolism on the basis of examining the effects of the two drugs on the growth of soil-cultivated rapeseed seedlings. The results showed that both plant height and biomass of rapeseed seedlings were significantly suppressed and ROS were significantly induced in rapeseed by exposure to high concentrations (2.5 mg/kg) of TC and SMZ. Carotenoids, tocopherols, and SOD enzymes were involved in the oxidative stress response to scavenge free radicals in rapeseed, but phenolic acids and flavonoids contents were decreased, which reduced the quality of the seeds to some extent.

6.
J Hepatol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552880

RESUMO

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognosis and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to combine clinical needs with technological advancements. Omics technologies allow for advanced investigations into biological processes from the genes to transcription and regulation, to circulating protein, metabolite and lipid levels, as well as the microbiome including bacteria, viruses and fungi. We consequently find ourselves in a period of rapid progress in technology and bioinformatics that may allow for development of precision biomarkers for personalised medicine. However, there are important barriers to consider in omics biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate across diverse populations, presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression in different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated through omics-technologies holds the power of hypothesis-free discovery of a plethora of candidate biomarkers to be further validated. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.

7.
J Colloid Interface Sci ; 663: 103-110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394815

RESUMO

As the drawbacks of antibiotics in treating bacterial infections emerged, physical methods such as near-infrared-activated (NIR-activated) bacterial killing, have attracted great interests for their advantages of no resistance, short action time and few side effects. In this manuscript, NIR-activated bacteria-killing performance of chiral copper sulphide nanoparticles (L-/d-CuS NPs) was investigated using linearly polarized light (LPL) and circularly polarized light (CPL) as illumination sources, respectively. Chiral CuS NPs showed enhanced NIR-activated bacteria-killing effect compared with achiral CuS NPs under the same conditions. Moreover, these chiral CuS NPs showed obvious chirality-related antibacterial effect: the bacterial killing was more efficient under CPL activation, and L- and d-CuS NPs had higher antibacterial efficiency under left circularly polarized light (LCPL) and right circularly polarized light (RCPL), respectively. The possible mechanism of bacteria-killing performance for chiral CuS NPs was discussed in detailed. Photothermal bacteria-killing tests of chiral CuS NPs "sealed" in polydimethylsiloxane (PDMS) demonstrated the individual influence of photothermal effect. These observations in this paper could provide ideas for the potential applications of chiral nanostructures with enhanced photothermal effect in efficient bacterial killing.


Assuntos
Nanopartículas , Nanoestruturas , Nanopartículas/química , Nanoestruturas/química , Antibacterianos/farmacologia , Cobre/farmacologia , Cobre/química , Bactérias
8.
Quant Imaging Med Surg ; 14(2): 1699-1715, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415157

RESUMO

Background: Evaluation of the tricuspid valve (TV) is crucial for clinical decision making and post-treatment follow-up in pulmonary hypertension (PH) patients. However, little is known about 4-dimensional (4D) TV geometric remodeling in patients with PH. The aim of this study was to examine the 4D geometry of the TV in PH and its correlation with PH severity. Methods: A total of 74 PH patients with mean pulmonary arterial pressure >25 mmHg and 15 age- and gender-matched healthy individuals were consecutively included from September 2017 to December 2018 in National Center for Cardiovascular Diseases, Fuwai Hospital. All participants underwent 2-dimensional (2D) and 4D transthoracic echocardiography and PH patients underwent right heart catheterization (RHC) within 48 hours of echocardiography. TV geometry was analyzed using a dedicated 4D echocardiography from the right ventricular-focused apical view. Results: Compared with controls, PH patients had significantly larger 4D tricuspid annular (TA) and TV tenting sizes except in the 2-chamber diameter. In high-quality image cases, maximal tenting height (MTH), coaptation point height, tenting volume and 4-chamber diameter had good or moderate correlation with PH severity graded according to RHC mean pulmonary artery pressure (r=0.705, r=0.644, r=0.602, r=0.472, respectively; P<0.001 for all). In multivariable linear regression analysis, PH severity was independently associated with coaptation point height (F=18.070, P<0.001 with an R2=0.647) and MTH (F=25.576, P<0.001 with an R2=0.378). Among all 4D TV parameters, MTH had the highest area under the receiver operating characteristic (ROC) curve (AUC) in high-quality image cases [AUC =0.857, 95% confidence interval (CI): 0.743-0.972; P<0.001], comparable to echocardiographic systolic pulmonary arterial pressure (AUC =0.847, 95% CI: 0.733-0.961; P<0.001). Conclusions: In PH, TV geometric remodeling occurs mainly in TA septal-lateral dimension and TV tenting height. Worsening PH is an independent determinant of TV coaptation point height and MTH, not TA size. MTH shows a great diagnostic potential to detect severe PH.

9.
Plant J ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379355

RESUMO

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.

10.
Aging (Albany NY) ; 16(3): 2232-2248, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38289619

RESUMO

BACKGROUND: Immune-related enhancer RNAs (eRNAs) have garnered significant attention in cancer metabolism research, yet their specific roles in ccRCC have remained elusive. METHODS: We retrieved eRNA expression profiles from TCGA database and identified immune-related eRNAs (IREs) by assessing their co-expression with immune genes. Utilizing consensus clustering, we organized these IREs into two distinct clusters. The construction of an IREs signature was accomplished through the LASSO and multivariate Cox analysis. Furthermore, we performed Cell Counting Kit-8 and clonogenic assays to assess changes in the proliferative capacity of Caki-1 and 769-P cells. RESULTS: The existence of two clusters of immune-related eRNAs in ccRCC, each with distinctive prognostic and immunological attributes. Cluster B exhibited immunosuppressive properties and displayed a positive correlation with immunosuppressive cells. Functional enrichment analysis unveiled their involvement in several tumor-promoting pathways, metabolic pathways and immune pathways. The IREs signature demonstrated its potential to accurately predict patient immune and prognostic characteristics. AC003092.1, an eRNA strongly associated with patient survival, emerged as a potential oncogene significantly linked to adverse prognosis and the presence of immunosuppressive cells and checkpoints in ccRCC patients. Notably, AC003092.1 displayed marked upregulation in ccRCC tissues and cell lines, and its knockdown substantially inhibited the proliferation of Caki-1 and 769-P cells. CONCLUSION: We established a robust predictive model that played a vital role in determining the prognosis, clinicopathological characteristics and immune cell infiltration patterns of ccRCC patients. IRE, particularly AC003092.1, which was strongly associated with survival, hold promise as novel immunotherapeutic targets for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Oncogenes , Bioensaio , 60425 , Imunossupressores , Neoplasias Renais/genética
11.
Int J Pharm ; 652: 123810, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244648

RESUMO

Transforming growth factor ß (TGF-ß), a versatile immunosuppressive cytokine, has gained increasing attention as a potential target for cancer immunotherapy. However, current strategies are constrained by tumor heterogeneity and drug resistance. Therapeutic probiotics, such as Escherichia coli Nissle1917 (EcN), not only regulate the gut microbiota to increase beneficial bacteria with anti-tumor effects, but also modulate immune factors within the body, thereby enhancing immunity. In this study, we developed an oral microgel delivery system of EcN@(CS-SA)2 by electrostatic interaction between chitosan (CS) and sodium alginate (SA), aiming to enhance its bioavailability in the gastrointestinal tract (GIT). Notably, EcN@(CS-SA)2 microgel showed a synergistic enhancement of the anti-tumor efficacy of Galunisertib (Gal, a TGF-ß inhibitor) by inducing apoptosis and immunogenic cell death (ICD) in tumor cells, as well as promoting increased infiltration of CD8+ T cells into the tumor microenvironment (TME).


Assuntos
Neoplasias Colorretais , Microgéis , Probióticos , Pirazóis , Quinolinas , Humanos , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T CD8-Positivos , Imunoterapia , Neoplasias Colorretais/tratamento farmacológico , Imunidade , Microambiente Tumoral , Linhagem Celular Tumoral
12.
Mol Cell Proteomics ; 23(2): 100713, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184013

RESUMO

Optimizing data-independent acquisition methods for proteomics applications often requires balancing spectral resolution and acquisition speed. Here, we describe a real-time full mass range implementation of the phase-constrained spectrum deconvolution method (ΦSDM) for Orbitrap mass spectrometry that increases mass resolving power without increasing scan time. Comparing its performance to the standard enhanced Fourier transformation signal processing revealed that the increased resolving power of ΦSDM is beneficial in areas of high peptide density and comes with a greater ability to resolve low-abundance signals. In a standard 2 h analysis of a 200 ng HeLa digest, this resulted in an increase of 16% in the number of quantified peptides. As the acquisition speed becomes even more important when using fast chromatographic gradients, we further applied ΦSDM methods to a range of shorter gradient lengths (21, 12, and 5 min). While ΦSDM improved identification rates and spectral quality in all tested gradients, it proved particularly advantageous for the 5 min gradient. Here, the number of identified protein groups and peptides increased by >15% in comparison to enhanced Fourier transformation processing. In conclusion, ΦSDM is an alternative signal processing algorithm for processing Orbitrap data that can improve spectral quality and benefit quantitative accuracy in typical proteomics experiments, especially when using short gradients.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Células HeLa , Proteômica/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38194393

RESUMO

Given the widespread occurrence of obesity, new strategies are urgently needed to prevent, halt and reverse this condition. We proposed a noninvasive neurostimulation tool, ultrasound deep brain stimulation (UDBS), which can specifically modulate the hypothalamus and effectively regulate food intake and body weight in mice. Fifteen-min UDBS of hypothalamus decreased 41.4% food intake within 2 hours. Prolonged 1-hour UDBS significantly decreased daily food intake lasting 4 days. UDBS also effectively restrained body weight gain in leptin-receptor knockout mice (Sham: 96.19%, UDBS: 58.61%). High-fat diet (HFD) mice treated with 4-week UDBS (15 min / 2 days) reduced 28.70% of the body weight compared to the Sham group. Meanwhile, UDBS significantly modulated glucose-lipid metabolism and decreased the body fat. The potential mechanism is that ultrasound actives pro-opiomelanocortin (POMC) neurons in the hypothalamus for reduction of food intake and body weight. These results provide a noninvasive tool for controlling food intake, enabling systematic treatment of obesity.


Assuntos
Estimulação Encefálica Profunda , Leptina , Camundongos , Animais , Leptina/metabolismo , Peso Corporal , Obesidade/terapia , Ingestão de Alimentos/fisiologia , Camundongos Endogâmicos C57BL
14.
Artigo em Inglês | MEDLINE | ID: mdl-38064323

RESUMO

Cardiac dysfunction is a severe complication that is associated with an increased risk of mortality in multiple diseases. Cardioprotection solution that has been researched is the electrical stimulation of the vagus nerve to exert cardio protection. This method has been shown to reduce the systemic inflammatory response and maintain the immune homeostasis of the heart. However, the invasive procedure of electrode implantation poses a risk of nerve or fiber damage. Here, we propose transthoracic ultrasound stimulation (US) of the vagus nerve to alleviate cardiac dysfunction caused by lipopolysaccharide (LPS). We developed a noninvasive transthoracic US system and exposed anesthetized mice to ultrasound protocol or sham stimulation 24 h after LPS treatment. Results showed that daily heart targeting US for 4 days significantly increased left ventricular systolic function ( p = 0.01) and improved ejection fraction ( p = 0.03) and shortening fraction ( p = 0.04). Furthermore, US significantly reduced inflammation cytokines, including IL-6 ( p = 0.03) and IL- 1ß ( p = 0.04). In addition, cervical vagotomy abrogated the effect of US, suggesting the involvement of the vagus nerve's anti-inflammatory effect. Finally, the same ultrasound treatment but for a longer period (14 days) also significantly increased cardiac function in naturally aged mice. Collectively, these findings suggest the potential of transthoracic US as a possible novel noninvasive approach in the context of cardiac dysfunction with reduced systolic function and provide new targets for rehabilitation of peripheral organ function.


Assuntos
Cardiopatias , Lipopolissacarídeos , Camundongos , Animais , Nervo Vago , Coração/diagnóstico por imagem , Citocinas
15.
Int J Biol Macromol ; 257(Pt 2): 128618, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070813

RESUMO

Administration of recombinant tPA (rtPA, or trade name Alteplase®) is an FDA-approved therapy for acute ischemic stroke (AIS), but poses the risk of hemorrhagic complications. Recombinant tPA can be rapidly inactivated by the endogenous inhibitor, plasminogen activator inhibitor 1 (PAI-1). In this work, we study a novel treatment approach that combines a PAI-1 inhibitor, PAItrap4, with a reduced dose of rtPA to address the hemorrhagic concern of rtPA. PAItrap4 is a highly specific and very potent protein-based inhibitor of PAI-1, comprising of a variant of uPA serine protease domain, human serum albumin, and a cyclic RGD peptide. PAItrap4 efficiently targets and inhibits PAI-1 on activated platelets, and also possesses a long half-life in vivo. Our results demonstrate that PAItrap4 effectively counteracts the inhibitory effects of PAI-1 on rtPA, preserving rtPA activity based on amidolytic and clot lysis assays. In an in vivo murine stroke model, PAItrap4, together with low-dose rtPA, enhances the blood perfusion in the stroke-affected areas, reduces infarct size, and promotes neurological recovery in mice. Importantly, such treatment does not increase the amount of cerebral hemorrhage, thus reducing the risk of cerebral hemorrhage. In addition, PAItrap4 does not compromise the normal blood coagulation function in mice, demonstrating its safety as a therapeutic agent. These findings highlight this combination therapy as a promising alternative for the treatment of ischemic stroke, offering improved safety and efficacy.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Inibidor 1 de Ativador de Plasminogênio , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico
16.
Asian J Pharm Sci ; 18(5): 100850, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37920651

RESUMO

The high nutrient and energy demand of tumor cells compared to normal cells to sustain rapid proliferation offer a potentially auspicious avenue for implementing starvation therapy. However, conventional starvation therapy, such as glucose exhaustion and vascular thrombosis, can lead to systemic toxicity and exacerbate tumor hypoxia. Herein, we developed a new "valve-off" starvation tactic, which was accomplished by closing the valve of glucose transporter protein 1 (GLUT1). Specifically, dihydroartemisinin (DHA), 2,20-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (AI), and Ink were co-encapsulated in a sodium alginate (ALG) hydrogel. Upon irradiation with the 1064 nm laser, AI rapidly disintegrated into alkyl radicals (R•), which exacerbated the DHA-induced mitochondrial damage through the generation of reactive oxygen species and further reduced the synthesis of adenosine triphosphate (ATP). Simultaneously, the production of R• facilitated DHA-induced starvation therapy by suppressing GLUT1, which in turn reduced glucose uptake. Systematic in vivo and in vitro results suggested that this radical-enhanced "valve-off" strategy for inducing tumor cell starvation was effective in reducing glucose uptake and ATP levels. This integrated strategy induces tumor starvation with efficient tumor suppression, creating a new avenue for controlled, precise, and concerted tumor therapy.

17.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833999

RESUMO

As a novel non-coding RNA with important functions corresponding to various cellular stresses, the function of tRFs in angiogenesis remains unclear. Firstly, small RNA sequencing was performed on normal and post-muscle injury mouse tibialis anterior muscle to identify and analyse differentially expressed tRF/tiRNA. tRNA GlnCTG-derived fragments (tRFGlnCTG) were found to be overexpressed in high abundance in the damaged muscle. Subsequent in vitro experiments revealed that the overexpression of tRFGlnCTG suppressed the vascular endothelial cells' viability, cell cycle G1/S transition, proliferation, migration, and tube-formation capacity. Similarly, in vivo experiments showed that the tRFGlnCTG decreased the relative mRNA levels of vascular endothelial cell markers and pro-angiogenic factors and reduced the proportion of CD31-positive cells. Finally, luciferase activity analysis confirmed that the tRFGlnCTG directly targeted the 3'UTR of Antxr1, leading to a significant reduction in the mRNA expression of the target gene. These results suggest that tRFGlnCTG is a key regulator of vascular endothelial cell function. The results provide a new idea for further exploration of the molecular mechanisms that regulate angiogenesis.


Assuntos
Células Endoteliais , RNA de Transferência , Camundongos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Endoteliais/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Sequência de Bases
18.
J Nanobiotechnology ; 21(1): 356, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777744

RESUMO

Currently, there is an increasing amount of evidence indicating that exosomes and the miRNAs they contain are crucial players in various biological processes. However, the role of exosomes and miRNAs in snake venom during the envenomation process remains largely unknown. In this study, fresh venom from Naja atra of different ages (2-month-old, 1-year-old, and 5-year-old) was collected, and exosomes were isolated through ultracentrifugation. The study found that exosomes with inactivated proteins and enzymes can still cause symptoms similar to cobra envenomation, indicating that substances other than proteins and enzymes in exosomes may also play an essential role in cobra envenomation. Furthermore, the expression profiles of isolated exosome miRNAs were analyzed. The study showed that a large number of miRNAs were co-expressed and abundant in cobra venom exosomes (CV-exosomes) of different ages, including miR-2904, which had high expression abundance and specific sequences. The specific miR-2094 derived from CV-exosomes (CV-exo-miR-2904) was overexpressed both in vitro and in vivo. As a result, CV-exo-miR-2904 induced symptoms similar to cobra envenomation in mice and caused liver damage, demonstrating that it plays a crucial role in cobra envenomation. These results reveal that CV-exosomes and the miRNAs they contain play a significant regulatory role in cobra envenomation. Our findings provide new insights for the treatment of cobra bites and the development of snake venom-based medicines.


Assuntos
Exossomos , MicroRNAs , Animais , Camundongos , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Elapidae/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , Venenos de Serpentes/metabolismo
19.
BMC Microbiol ; 23(1): 249, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674107

RESUMO

Captive pandas are suffering from intestinal infection due to intestinal microbiota characterized by a high abundance of Enterobacteriaceae induced by long-term captivity. Probiotic supplements showed improvement in intestinal barrier function and inflammation. However, the effects of panda-derived probiotics on the intestinal epithelium and inflammation have not been elucidated. In the present study, lipopolysaccharide (LPS) impaired Caco-2 and RAW264.7 inflammatory models were applied to assess the protection of Lactiplantibacillus plantarum BSG201683 (L. plantarum G83) on barrier disruption and inflammation. The results showed that treatment with L. plantarum G83 significantly decreased the paracellular permeability to fluorescein isothiocyanate conjugated dextran (MW 4000, FITC-D4) after LPS induction. Meanwhile, L. plantarum G83 alleviated the reduction in tight junction (TJ) proteins and downregulated proinflammatory cytokines caused by LPS in Caco-2 cells. L. plantarum G83 also significantly decreased the expression and secretion of pro-inflammatory cytokines in LPS-induced RAW264.7 cells. In addition, the IL-10 increased in both Caco-2 and RAW264.7 cells after L. plantarum G83 treatment. The phagocytosis activity of RAW264.7 cells was significantly increased after L. plantarum G83 treatment. Toll-like receptor 4/ nuclear factor kappa-B (TLR4/NF-κB) signaling pathways were significantly down-regulated after L. plantarum G83 intervention, and the phosphorylation of NF-κB/p65 was consistent with this result. Our findings suggest that L. plantarum G83 improves intestinal inflammation and epithelial barrier disruption in vitro.


Assuntos
Lipopolissacarídeos , NF-kappa B , Humanos , Células CACO-2 , Citocinas , Inflamação/induzido quimicamente
20.
Int J Biol Macromol ; 253(Pt 5): 127042, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742894

RESUMO

Excessive expansion of adipocytes can have unhealthy consequences as excess free fatty acids enter other tissues and cause ectopic fat deposition by resynthesizing triglycerides. This lipid accumulation in various tissues is harmful and can increase the risk of related metabolic diseases such as type II diabetes, cardiovascular disease, and insulin resistance. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that play a key role in energy metabolism as fatty acid metabolism sensors, and peroxisome proliferator-activated receptor γ (PPARγ) is the main subtype responsible for fat cell differentiation and adipogenesis. In this paper, we introduce the main structure and function of PPARγ and its regulatory role in the process of lipogenesis in the liver, kidney, skeletal muscle, and pancreas. This information can serve as a reference for further understanding the regulatory mechanisms and measures of the PPAR family in the process of ectopic fat deposition.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR gama , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos , Adipócitos/metabolismo , Adipogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...